Accurate Ex-situ Measurements of PEM Fuel Cells Catalyst Layer Dry Diffusivity

نویسندگان

  • S. Salari
  • C. McCague
  • M. Tam
  • M. S. Saha
  • J. Stumper
  • M. Bahrami
چکیده

Polymer electrolyte membrane fuel cells (PEMFC) efficiently convert the reaction energy of hydrogen and oxygen to electricity, water and heat. The oxygen reduction reaction occurs in composite nanostructured catalyst layers (CL) formed from Pt nanoparticles supported on a network of carbon particle agglomerates. Oxygen reaches the reaction site through diffusion. Understanding the diffusion properties of CL is vital to proper design and operation of CL and PEMFC. Measuring the diffusivity of thin porous layers is challenging, as is selecting a suitable substrate and appropriate CL coating procedures. In this work, CL is coated on 70 μm thick hydrophobic porous polymer substrates with a Mayer bar coater. Several samples are prepared and their thickness are measured accurately. The diffusivity of the CL and the substrate are measured using a dry diffusivity test bed and the resulting CL-diffusivity values are determined for different Pt loadings.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Impact of Wettability on Effective Properties of Cathode Catalyst Layer in a Proton Exchange Membrane Fuel Cell

The produced liquid water in cathode catalyst layer (CCL) has significant effect on the operation of proton exchange membrane fuel cell (PEMFC). To investigate this effect, the transport of oxygen in CCL in the presence of immiscible liquid water is studied applying a two-dimensional pore scale model. The CCL was reconstructed as an agglomerated system. To explore the wettability effects, diffe...

متن کامل

MEA Degradation and Failure Modes in PEM Fuel Cells

The mechanisms of fuel cell degradation are not well understood. Even though the numbers of installed units around the world continue to increase and dominate the pre-markets, the present lifetime requirements for fuel cells cannot be guarantee, creating the need for a more comprehensive knowledge of material’s ageing mechanism. In this work, failure modes and mechanism of the membrane-electrod...

متن کامل

Performance Improvement of PEM Fuel Cells Using Air Channel Indentation; Part I: Mechanisms to Enrich Oxygen Concentration in Catalyst Layer

A three dimensional, compressible, steady, one phase flow of reactant-product mixture in the air side electrode of proton exchange membrane fuel cell (PEMFC) is numerically studied in this paper. The mixture is composed of three species: oxygen, nitrogen and water vapor. The performance of the cell is enhanced by partial blockage of the flow field channels. Various types of these blocks also ca...

متن کامل

Impact of anisotropy level of gas diffusion layer on the temperature distribution of a PEM fuel cell cathode electrode

Proton exchange membrane (PEM) fuel cells being employed in fuel cell vehicles (FCVs) are promising power generators producing electric power from fuel stream via porous electrodes. Structure of carbon paper gas diffusion layers (GDLs) applying in the porous electrodes can have a great influence on the PEM fuel cell performance and distribution of temperature, especially at the cathode side whe...

متن کامل

Effect of CO in the reformatted fuel on the performance of Polymer Electrolyte Membrane (PEM) fuel cell

There are several obstacles to the commercialization of PEM fuel cells.  One of the reasons is that the presence of carbon monoxide (CO) in the reformatted fuel, even at a very small scale, decreases the fuel cell performance. The aim of this paper is to investigate the effect of CO in reformatted fuel on PEM fuel cell performance. For this purpose, a steady state, one-dimensional and non-isoth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015